سیاهچاله ناحیهای از فضا-زمان است که جرم در آن فشرده شده است.[۱] وجود سیاهچالهها در نظریه نسبیت عام آلبرت اینشتین پیش بینی میشود. این نظریه پیش بینی میکند که یک جرم به اندازه کافی فشرده میتواند سبب تغییر شکل و خمیدگی فضا-زمان وتشکیل سیاهچاله شود. پیرامون سیاهچاله رویهای ریاضی به نام افق رویداد تعریف میشود که هیچ چیزی پس از عبور از آن نمیتواند به بیرون برگردد و نقطه بدون بازگشت است. صفت «سیاه» در نام سیاهچاله به این دلیل است که همه نوری که به افق رویداد آن راه مییابد را به دام میاندازد که این دقیقاً مانند مفهوم جسم سیاه در ترمودینامیک میباشد.[۲] مکانیک کوانتوم پیشبینی میکند که آفاق رویداد مانند یک جسم سیاه با دمای متناهی از خود تابشهای گرمایی گسیل میکنند. این دما با جرم سیاهچاله نسبت وارونه دارد و از این روی مشاهده این تابش برای سیاهچالههای ستارهای و بزرگتر دشوار است.
اجسامی که به دلیل میدان گرانشی بسیار قوی اجازه گریز به نور نمیدهند برای اولین بار در سده ۱۸ (میلادی) توسط جان میشل و پیر سیمون لاپلاس مورد توجه قرار گرفتند. اولین راه حل نوین نسبیت عام که در واقع ویژگیهای یک سیاهچاله را توصیف مینمود در سال ۱۹۱۶ میلادی توسط کارل شوارتزشیلد کشف شد.[۳][۴] هر چند که تعبیر آن به صورت ناحیهای از فضا که هیچ چیز نمیتواند از آن بگریزد، تا چهار دهه بعد به خوبی درک نشد. برای دورهای طولانی این چالش مورد کنجکاوی ریاضیدانان بود تا اینکه در میانه دهه ۱۹۶۰، پژوهشهای نظری نشان داد که سیاهچالهها به راستی یکی از پیش بینیهای ژنریک نسبیت عام هستند. یافتن ستارگان نوترونی باعث شد تا وجوداجرام فشرده شده بر اثر رمبش گرانشی به عنوان یک واقعیت امکانپذیر فیزیکی مورد علاقه دانشمندان قرار گیرد.[۵] اینگونه پنداشته میشود که سیاهچالههای ستارهای در جریان فروپاشی ستارههای بزرگ در یک انفجار ابرنواختری درپایان چرخه زندگیشان بوجود میآیند. جرم یک سیاهچاله پس از شکل گیری میتواند با دریافت جرم از پیرامونش افزایش یابد. با جذب ستارگان پیرامون و بهم پیوستن سیاهچالههای گوناگون، سیاهچالههای کلان جرم با جرمی میلیونها برابر خورشید تشکیل میشوند.[۶]
یک سیاهچاله به دلیل اینکه نوری از آن خارج نمیگردد نادیدنی است، اما میتواند بودن خود را از راه کنش و واکنش با ماده از پیرامون خود نشان دهد. از راه بررسی برهمکنش میان ستارههای دوتایی با همدم نامرئیشان، اخترشناسان نامزدهای احتمالی بسیاری برای سیاهچاله بودن در این منظومهها شناسایی کردهاند. این باور جمعی در میان دانشمندان رو به گسترش است که در مرکز بیشتر کهکشانها یک سیاهچاله کلانجرم وجود دارد. برای نمونه، دستاوردهای ارزشمندی بازگوی این واقعیت است که در مرکز کهکشان راه شیری ما نیز یک سیاهچاله کلان جرم با جرمی بیش از چهار میلیون برابر جرم خورشید وجود دارد.
اریخچه

ابداع واژه «کرمچاله»[۸] و «سیاهچاله فضایی»[۹] به جان ویلر نسبت داده شدهاست. با اینحال، این مفهوم از مدتها قبل به صورتهای متفاوتی مطرح بودهاست.
مفهوم جسمی که آن قدر پرجرم است که حتی نور هم نمیتواند از آن بگریزد، نخستین باراز سوی زمینشناسی به نام جان میشل درسال ۱۷۸۳ در نامهای که برای هنری کاوندیش از انجمن سلطنتی نوشته بود، مطرح شد. در آن زمان مفهوم نظریه گرانش نیوتن و مفهوم سرعت گریز شناخته شده بودند. طبق محاسبات میشل جسمی با شعاع خورشید و چگالی ۵۰۰ برابر در سطح خود سرعت گریزی بیش از سرعت نور خواهد داشت و بنابر این غیر قابل مشاهده خواهد بود. به بیان او:
اگر شعاع کرهای مشابه خورشید قرار باشد که با چگالی ۵۰۰ بار از آن بزرگ تر باشد، جسمی که از ارتفاع بینهایت به سمت آن سقوط میکند در سطح آن سرعتی بیش ازسرعت نور به دست میآورد، و اگر فرض کنیم نور با نیروی مشابهی به سمت ستاره کشیده شود، آنگاه همه نوری که از چنین جسمی ساطع میشود به ناچار به وسیله گرانش آن به سمت خود ستاره بازمی گردد.— جان میشل
در سال ۱۷۹۶ پیر سیمون لاپلاس، ریاضیدان فرانسوی همان ایده را در ویرایش اول و دوم کتاب خود به نام آشکارسازی نظام جهان مطرح کرد. این مطالب در ویرایشهای بعدی کتاب حذف شد.[۱۱][۱۲] مفهوم این ستارههای تاریک در سده ۱۹ (میلادی) توجه چندانی را به خود جلب نکرد زیرا فیزیک دانان نمیتوانستند درک کنند که نور که یک موج و بدون جرم است چگونه ممکن است تحت تاثیر نیروی گرانش قرار گیرد.
نسبیت عام
نسبیت عام |
---|
![]() ![]() |
درسال ۱۹۱۵ آلبرت اینشتین که پیش تر نشان داده بود که گرانش، نور را تحت تاثیر قرار میدهد، نظریه گرانش خود به نام نسبیت عام را مطرح کرد. چند ماه بعد کارل شوارتزشیلد پاسخی برای معادلات میدان اینشتین ارائه نمود که میدان گرانشی ذرات نقطهای و کروی را توصیف میکرد.[۱۳] چند ماه پس از شوارتزشیلد، ژوهانس دروست - که از شاگردان هندریک لورنتز بود - به صورت جداگانه همان پاسخ را برای ذرات نقطهای به دست آورد و بحث مفصل تری در مورد ویژگیهای آن نمود.[۱۴] این پاسخ در شعاعی که امروزه شعاع شوارتزشیلد نامیده میشود رفتاری غیر عادی نمایش میداد. زیرا در این شعاع، معادله تکینه میشود و برخی از اجزای آن مقدار بی نهایت خواهند داشت. در آن زمان ماهیت این سطح به درستی فهمیده نشده بود. در سال ۱۹۲۴ آرتور استنلی ادینگتون نشان داد که با تغییر مختصات میتوان تکینگی را بر طرف نمود. هر چند که تا سال ۱۹۳۳ طول کشید تا ژرژ لومتر متوجه شد که مقدار بی نهایت این معادله در شعاع شوارتزشیلد در واقع یک تکینگی ریاضی است و جنبه فیزیکی ندارد.[۱۵] این شعاع امروزه به عنوان شعاع افق رویداد یک سیاهچاله غیرچرخشی شناخته میشود.
در سال ۱۹۳۰ سابراهمانین چاندراسکار، اختر فیزیک دان هندی محاسبه نمود که یک جسم الکترون تباهیده غیر چرخنده که جرم آن از حدی که بعدها به نام حد چاندراسخار نامیده شد و ۱٫۴ برابر جرم خورشید است، بیشتر باشد هیچ جواب پایداری ندارد.[۱۶] ادعای وی از سوی هم دورهایهای وی همچون ادینگتون و لو لاندائو مورد مخالفت قرار گرفت. آنها ادعا میکردند که مکانیزمی ناشناخته وجود دارد که از فروپاشی این اجرام جلوگیری میکند.[۱۷] ادعای آنها تا حدودی درست بود زیرا یک کوتوله سفید که جرم آن اندکی از حد چاندراسخار بزرگتر باشد پس از فروپاشی به یک ستاره نوترونی تبدیل میشود[۱۸] که بنا بر اصل طرد پاولی، وضعیتی پایدار دارد، اما در سال ۱۹۳۹ روبرت اوپنهایمر و دیگران پیش بینی کردند که ستارههای نوترونی که جرمی بیشتر از سه برابر جرم خورشید دارند به دلایلی که توسط چاندراسکار ارائه شد، به سیاهچاله فروپاشی میشوند و نتیجه گیری کردند که هیچ ساز و کار فیزیکی نمیتواند از فروپاشی برخی ستارگان به سیاهچاله جلوگیری نماید. [۱۹]
عصر طلایی
در سال ۱۹۵۸، دیوید فینکلشتین سطح شوارتز شیلد را به عنوان یک افق رویداد معرفی نمود، «یک غشای کاملاً یک جهته که تاثیرات سببی تنها از یک سو از آن عبور میکنند.»[۲۰] این مطلب تناقض صریحی با نتایج اوپنهایمر ندارد بلکه آن را گسترش میدهد تا ناظرین در حال سقوط به سیاهچاله را نیز شامل شود.[۲۱]
این نتایج مقارن بود با آغاز عصر طلایی نسبیت عام که در آن تحقیقات درباره نسبیت عام و سیاهچالهها رونق فراوان یافت. کشف تپ اخترها در سال ۱۹۶۷ که درسال ۱۹۶۹ نشان داده شد که ستارههای نوترونی چرخنده با سرعت چرخش بالا هستند،[۲۲] به این فرایند کمک کرد.[۲۳][۲۴] تا آن زمان ستارگان نوترونی مانند سیاهچالهها تنها در حوزه تئوری مطرح بودند، اما کشف تپ اخترها نشان داد که واقعیت فیزیکی نیز دارند و باعث شد تا علاقه شدیدی به انواع اجسام فشردهای که ممکن است بر اثر رمبش گرانشی تشکیل شوند برانگیخته شود. کشف اختروش (کوازار)ها که انرژی خروجی بسیار بزرگی آنها این احتمال را مطرح نمود که ممکن است مکانیزم بوجود آورنده این انرژی، رمبش گرانشی باشد.[۲۵]
در این دوره جوابهای کلی تری نیز برای معادله سیاهچاله پیدا شد. روی کِر جواب دقیقی برای یک سیاه چاله چرخان به دست آورد. دو سال بعد ازرا نیومن یک جواب متقارن محوری برای سیاهچالهای که هم چرخان باشد و هم دارای بار الکتریکی باشد کشف نمود.[۲۶] در نتیجه کارهای ورنر اسرائیل،[۲۷] براندون کارتر[۲۸][۲۹] و دیوید رابینسون[۳۰] نظریه بدون مو ظهور کرد که با استفاده از پارامترهای متریک کر-نیومن، جرم، تکانه زاویهای و بار الکتریکی یک سیاهچاله ثابت را توصیف نمود.[۳۱]
ویژگیها و ساختار
نظریه «بدون مو»ی جان ویلر بیان میکند که هرگاه سیاهچاله تشکیل شود و به وضعیت پایدار برسد، تنها سه خاصیت فیزیکی مستقل در سیاهچالهها قابل تشخیص هستند که عبارتند از: جرم، بار الکتریکی، و اندازه حرکت زاویهای. در مکانیک کلاسیک (غیر کوانتومی)[۳۱] دوسیاهچاله که دارای مقادیر یکسانی برای سه ویژگی ذکر شده باشند، نامتمایز اند. این سه ویژگی، ویژگیهای خاصی هستند زیرا از بیرون سیاهچاله قابل مشاهدهاند. مثلاً یک سیاهچاله باردار همچون هر جسم باردار دیگری بارهای همنام را دفع میکند. به طریق مشابهی مجموع جرم درون کرهای که یک سیاهچاله را دربرمی گیرد از طریق همتای قانون گاوس در مورد نیروهای گرانشی یعنی جرم ای. دی. ام نسبیت عام از فواصل بسیار دور اندازه گیری نمود.[۳۲] به همین ترتیب تکانه زاویهای یک سیاهچاله را نیز میتوان از راه کشش چارچوب توسط میدان به دست آورد.
وقتی جسمی به درون سیاهچالهای سقوط میکند تمام مربوط به شکل جرم یا توزیع بار سطحی آن به طور یکنواخت در امتداد افق رویداد توزیع میشود و از دید ناظر خارجی گم میشود. این رفتار افق رویداد به عنوان نامیده میشود و به آنچه در یک غشای کشی رسانا با اصطکاک و مقاومت الکتریکی رخ میدهد شباهت بسیار دارد.[۳۳] این تفاوت از آن دسته نظریههای میدانی مانند الکترو مغناطیس است که به دلیلی هیچ اصطکاک یا مقاومتی در سطح میکروسکوپیک ندارند. زیرا یک سیاهچاله در نهایت با سه پارامتر به حالت پایدار میرسد و هیچ راهی وجود ندارد که از گم شدن اطلاعات مربوط به شرایط اولیه اجتناب نمود: میدانهای گرانشی و الکتریکی سیاهچاله اطلاعات بسیار اندکی در بارهٔ آنچه وارد سیاهچاله شدهاست میدهند. اطلاعات گم شده شامل هر کمیتی است که از فاصله دور از افق رویداد یک سیاهچاله قابل اندازه گیری نیستند. از جمله میتوان از عدد باریونی و عدد لپتونی کل نام برد. این موضوع تا اندازهای گیج کنندهاست که از آن به یاد میشود.[۳۴][۳۵]
خواص فیزیکی
ساده ترین نوع سیاهچالهها آنهایی هستند که تنها جرم دارند و بار الکتریکی و تکانه زاویهای ندارند. این سیاهچالهها را اغلب با نام سیاهچالههای شوارتزشیلد مینامند که بر گرفته از نام کارل شوارتزشیلد است که جوابی برای معادلات میدانی انیشتین در سال ۱۹۱۶ ارائه نمود.[۱۳] بنا بر در نسبیت عام، تنها است که است. این بدان معنی است که تفاوتی میان میدان گرانشی یک سیاهچاله و یک جسم کروی با همان جرم وجود ندارد. بنابراین سیاهچاله تنها در محدوده نزدیک به افق آن است که همه چیز حتی نور را به درون میکشد و در فواصل دورتر کاملاً مانند هر جسم دیگری با همان میزان جرم رفتار میکند.[۳۶]
راه حلهایی برای معادلات انیشتین که سیاهچالههای کلی تری را توصیف میکنند نیز وجود دارند. مثلاً متریک رایسنر-نوردشتروم سیاهچالههای باردار و متریک کر سیاهچالههای چرخان را توصیف میکنند. کلی ترین جواب موجود برای سیاهچالههای ثابت متریک کر-نیومن است که سیاهچالههایی را توصیف میکند که هم بار الکتریکی وهم تکانه زاویهای دارند.[۳۷]
در حالیکه جرم سیاهچاله میتواند هر مقداری داشته باشد، بار و تکانه زاویهای آن توسط جرم محدود میشوند. چنانچه را بکار بریم، کل بار الکتریکی Q و مجموع تکانه زاویهای J در این رابطه صدق میکنند(M جرم سیاهچالهاست): . سیاهچالههایی که نابرابری فوق را اشباع میکنند، نامیده میشوند. جوابهایی نیز برای معادلات انیشتین موجودند که این نابرابری را نقض میکنند اما این جوابها افق رویداد ندارند. این جوابها را تکینگیهای برهنه مینامند که از بیرون قابل مشاهدهاند و در نتیجه نمیتوانند فیزیکی باشند. فرضیه سانسور کیهانی شکل گیری چنین تکینگیهایی را در جریان رمبش نامحتمل میشمرد.[۳۸]
به دلیل قدرت نسبی دوتایی پرتو ایکس جیآراس ۱۹۱۵+۱۰۵ [۳۹] به نظر میرسد که تکانه زاویهای نزدیک به حداکثر مقدار مجاز داشته باشد.
افق رویداد
![]() در نواحی دور از یک سیاهچاله یک ذره میتواند در هرجهتی حرکت کند و تنها محدود به سرعت نور است. |
![]() در فواصل نزدیکتر به سیاهچاله فضا-زمان شروع به خمش میکند. مسیرهایی که به سیاهچاله ختم میشوند از مسیرهایی که از آن دور میشوند بیشترند. [Note ۱] |
![]() در داخل افق رویداد تمام مسیرها ذره را به سمت مرکز سیاهچاله سوق میدهند. ذره دیگر امکان گریز نخواهد داشت. |
مهمترین ویژگی که یک سیاهچاله را تعریف میکند پیدایش افق رویداد است. افق رویداد به شکل کروی یا تقریباً کروی با شعاع شوارتزشیلد حول نقطه مرکزی سیاهچالهاست. این کره ناحیهای از فضا زمان است که عبور نور و ماده از آن تنها در یک جهت و به طرف درون آن ممکن است. درون این کره سرعت گریز از سرعت نور بیشتر خواهد بود، و از آنجاییکه هیچ جسمی توانایی حرکت با سرعت بیشتر از سرعت نور را ندارد، هیچ جسمی توانایی گریز از این منطقه را ندارد. هر جرم یا انرژی که به یک سیاه چاله نزدیک شود، در داخل فاصله معینی که افق رویداد آن خوانده میشود، به طور مقاومت ناپذیری به درون سیاه چاله کشیده میشود. نوری که از اطراف یک سیاه چاله عبور میکند، اگر به افق رویداد نرسد، روی مسیری منحنی شکل از کنار آن میگذردو اگر به افق رویداد برسد، در سیاه چاله سقوط میکند. افق رویداد را از این رو به این نام میخوانند که از درون آن اطلاعات راجع به آن رخداد به مشاهده کننده نمیرسد ومشاهده کننده نمیتواند یقین حاصل کند که این اتفاق رخ دادهاست. [۴۱]
آنگونه که در نسبیت عام پیش بینی میشود، حضور یک جسم باعث خمش فضا-زمان میشود به گونهای که مسیرهایی که ذرات طی میکنند به سمت جرم خمیده میشوند.[۴۲] در افق رویداد یک سیاهچاله این تغییر شکل به اندازهای قوی میشود که هیچ مسیری که از سیاهچاله دور شود وجود نخواهد داشت.
از دید یک ناظر دور زمان در نزدیکی سیاهچاله کندتر از نقاط دورتر خواهد گذشت.[۴۳] این پدیده به نام اتساع زمان نامیده میشود. شیئی که به افق رویداد نزدیک شود به نظر خواهد رسید که هرچه نزدیکتر میگردد از سرعت آن کاسته میشود و زمانی بی نهایت طول خواهد کشید تا به آن برسد.[۴۴] و چون تمام فرایندهای این ذره کندتر میشود، نوری که منتشر میکند تاریکتر و قرمزتر خواهد شد که این اثر به نام